A fully nonlinear conformal flow on locally conformally flat manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fully Nonlinear Conformal Flow on Locally Conformally Flat Manifolds

We study a fully nonlinear flow for conformal metrics. The long-time existence and the sequential convergence of flow are established for locally conformally flat manifolds. As an application, we solve the σk-Yamabe problem for locally conformal flat manifolds when k 6= n/2.

متن کامل

A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary

We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.

متن کامل

Geometric Inequalities on Locally Conformally Flat Manifolds

In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...

متن کامل

Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds

In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.

متن کامل

The Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds

Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2003

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crll.2003.033